Aluminum and copper interact in the promotion of oxidative but not inflammatory events: implications for Alzheimer's disease.
نویسندگان
چکیده
The etiology of Alzheimer's Disease (AD) is multifactorial. It has been suggested that transition metals such as copper (Cu) and iron (Fe) as well as aluminum (Al) may be involved in the pathogenesis of the disorder. While Cu and Fe are redox-active, Al only exists in the trivalent form and is redox-inert. We previously demonstrated that Al exposure causes an increase in inflammatory parameters in human glioblastoma T98G cells. In the present study we further demonstrate that co-exposure with Cu exacerbates the oxidative but not inflammatory effects of Al in this cell line. While Cu-induced reactive oxygen species (ROS) production was greatly enhanced in the presence of Al, TNF-alpha secretion induced by either metal was not further potentiated by simultaneous exposure to Al and Cu. Furthermore, exposure to both metals reduced the individual Al and Cu-induced activation of the immune-related transcription factor NF-kappaB. Therefore, while synergistic interaction between the two metals increases oxidative events, this does not lead to potentiation of Al-induced inflammation. Thus the ability of aluminum to promote inflammatory processes does not depend on an increase ROS production induced by interaction with transition metals.
منابع مشابه
P 59: Non-Steroidal Anti-Inflammatory Drugs as a Prevention of Alzheimer Disease: Risks and Benefits
Alzheimer's disease (AD) is a chronic neurodegenerative disease that accounts for 60 to 80 percent of all dementia cases. The exact cause of Alzheimer`s disease is still unknown, but recent studies suggest neuro-inflammation as an important part of the pathogenesis of the disease. This brings in mind using non-steroidal anti-inflammatory drugs (NSAID) as treatment or prevention of the disease. ...
متن کاملP 153: Neuroinflammation in Multiple Sclerosis
Multiple sclerosis (MS) is a complex disease which is correlated with increasing inflammatory factors, demyelination and axonal loss. In this auto-immune disease, Neuroinflammation is mediated by different types of T cells with macrophage/microglial activation and B cells involvement that interact in a collaborative manner. Focal inflammation is the main cause for the onset of relapses and coul...
متن کاملP135: The Role of Amyloid Beta-Peptides and Tau Protein in Alzheimer\'s Disease
Alzheimer's desease is the most common age-related neurodegenerative disorder, and cognitive problems such as defects in learning and memory are of its symptoms. Among the factors involved in the pathogenesis of the disease are biochemical disorders in protein production, oxidative stress, decreased acetylcholine secretion and inflammation of the brain tissue. Extra-neuronal accumulation ...
متن کاملCopper complexing decreases the ability of amyloid beta peptide to cross the BBB and enter brain parenchyma.
The amyloid hypothesis states that amyloid beta protein (Abeta) plays a major causal role in the onset of Alzheimer's disease. Toxicity of Abeta can be modified by metal ions. Two mechanisms by which such Abeta and metal ions could interact are by enhanced oxidative stress or by altered fibrillation. Specifically, Abeta fibrillation is increased by aluminum (Al) and copper (Cu) and Al also incr...
متن کاملP 62: Markers of Neuroinflammation Related to Alzheimer\'s Disease Pathology in the Elderly
Alzheimer Disease (AD) is a neurodegenerative disorder and the most common form of dementia. Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment, but includes strong interactions with immunological mechanisms in the brain. In vitro and animal studies have linked neuroinflammation to Alzheimer's disease (AD) pathology. Studies on marke...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Alzheimer's disease : JAD
دوره 5 1 شماره
صفحات -
تاریخ انتشار 2003